
PM7 Quick Reference — Classes (OOP) Applied Computing Australia

Defining a Class
Classes are blueprints for objects. Use PascalCase.
class SolarPanel:
 def __init__(self, brand, watts, price):
 self.brand = brand
 self.watts = watts
 self.price = price

 def value_ratio(self):
 return self.watts / self.price

 def display(self):
 ratio = self.value_ratio()
 print(f"{self.brand}: {ratio:.2f} W/$")

Creating Objects (Instances)
panel = SolarPanel("SunPower", 440, 450)
print(panel.brand) # SunPower
print(panel.value_ratio()) # 0.978
panel.display()
Each object has its own attribute values.

Understanding self
self refers to the current object. Every method’s first parameter is self.
• self.brand – access this object’s brand
• self.value_ratio() – call another method on this object
class Counter:
 def __init__(self):
 self.count = 0
 def increment(self):
 self.count += 1
Two objects have independent state:
c1 = Counter(); c2 = Counter()
c1.increment(); c1.increment()
print(c1.count) # 2
print(c2.count) # 0

OOP Terminology
Term Meaning
Class Blueprint/template for objects
Object Instance created from a class
Attribute Data stored in an object (self.x)
Method Function defined inside a class
__init__ Constructor — runs when object is created
self Reference to the current object

Encapsulation
Keep data private and control access through methods.
Convention: prefix with _ (protected) or __ (private).
class SolarAccount:
 def __init__(self, balance):
 self.__balance = balance

 def deposit(self, amount):
 if amount > 0:
 self.__balance += amount
 return True
 return False

 def get_balance(self):
 return self.__balance

acc = SolarAccount(100)
acc.deposit(50)
print(acc.get_balance()) # 150
acc.__balance # AttributeError!
Methods validate input before modifying state.

Classes Working Together
Objects can contain other objects:
class KnowledgeBase:
 def __init__(self):
 self.faqs = {"rebate": "Up to $1400"}
 def search(self, keyword):
 return self.faqs.get(keyword)

class Chatbot:
 def __init__(self):
 self.kb = KnowledgeBase() # has-a
 def respond(self, question):
 answer = self.kb.search(question)
 return answer if answer else "Unknown"

Four OOP Principles
Principle Meaning
Abstraction Hide complexity behind simple interface
Encapsulation Bundle data + methods; control access
Generalisation Design general classes for reuse
Inheritance Create specialised classes from a parent

Common Errors
Forgetting self – first parameter of every method must be self.
def display(self): not def display():.

self.x vs x – self.x is an attribute; x alone is local.
Forgetting self. means the value is lost after the method ends.

Calling method without () – panel.display returns the method object.
Use panel.display() to actually run it.

Modifying attributes directly – breaks encapsulation.
Use methods like deposit() instead of account._balance = 999.

	Defining a Class
	Creating Objects (Instances)
	Understanding self
	OOP Terminology
	Encapsulation
	Classes Working Together
	Four OOP Principles
	Common Errors

