PM7 Quick Reference Classes (OOP)

Defining a Class
Classes are blueprints for objects. Use PascalCase.
class SolarPanel:

def init (self, brand, watts, price):

self.brand = brand
self.watts = watts
self.price = price

def value ratio(self):
return self.watts / self.price

def display(self):
ratio = self.value ratio()
print(f"{self.brand}: {ratio:.2f} W/$")

Creating Objects Elnstances)

panel = SolarPanel("SunPower", 440, 450)
print(panel.brand) # SunPower
print(panel.value ratio()) # 0.978
panel.display()

Each object has its own attribute values.

Understanding self
self refers to the current object. Every method’s first parameter is self.
e self.brand — access this object’s brand
o self.value ratio() — call another method on this object
class Counter:
def init (self):
self.count = 0
def increment(self):
self.count += 1
Two objects have independent state:
cl = Counter(); c2 = Counter()
cl.increment(); cl.increment()
print(cl.count) # 2
print(c2.count) # 0

OOP Terminology

Term Meaning

Class Blueprint /template for objects

Object |Instance created from a class

Attribute | Data stored in an object (self.x)

Method |Function defined inside a class

__init__ |Constructor — runs when object is created

self Reference to the current object

Encapsulation
Keep data private and control access through methods.
Convention: prefix with _ (protected) or __ (private).
class SolarAccount:
def init (self, balance):
self. balance = balance

def deposit(self, amount):
if amount > 0:
self. balance += amount
return True
return False

def get balance(self):
return self. balance

acc = SolarAccount(100)

acc.deposit(50)

print(acc.get balance()) # 150

acc. balance # AttributeError!
Methods validate input before modifying state.

Classes Working Together
Objects can contain other objects:
class KnowledgeBase:
def init (self):
self.fags = {"rebate": "Up to $1400"}
def search(self, keyword):
return self.fags.get(keyword)

class Chatbot:

def init (self):
self.kb = KnowledgeBase() # has-a
def respond(self, question):

answer = self.kb.search(question)

return answer if answer else "Unknown"

Four OOP Principles

Applied Computing Australia

Principle Meaning

Abstraction |Hide complexity behind simple interface

Encapsulation | Bundle data + methods; control access

Generalisation | Design general classes for reuse

Inheritance Create specialised classes from a parent

Common Errors

Forgetting self — first parameter of every method must be self.
def display(self): not def display():.

self.x vs x — self.x is an attribute; x alone is local.
Forgetting self. means the value is lost after the method ends.

Calling method without () — panel.display returns the method object.

Use panel.display() to actually run it.
Modifying attributes directly — breaks encapsulation.
Use methods like deposit() instead of account. balance = 999.

	Defining a Class
	Creating Objects (Instances)
	Understanding self
	OOP Terminology
	Encapsulation
	Classes Working Together
	Four OOP Principles
	Common Errors

