
PM5 Quick Reference — Functions Applied Computing Australia

Defining & Calling Functions
def calculate_cost(panels, price):
 total = panels * price
 return total

result = calculate_cost(12, 450)
print(f"Cost: ${result}")
return sends a value back. Without it, the function returns None.

Parameters & Arguments
def greet(name, greeting="Hello"):
 print(f"{greeting}, {name}!")

greet("Alice") # Hello, Alice!
greet("Bob", "Good day") # Good day, Bob!

Scope (Local vs Global)
Variables inside a function are local — they only exist inside it.
x = 10 # global

def my_func():
 x = 99 # local (different x!)
 print(x) # 99

my_func()
print(x) # 10 (unchanged)

Importing Modules
import math
print(math.sqrt(16)) # 4.0

from math import pi
print(pi) # 3.14159...

import random as rnd
print(rnd.randint(1, 10))

Linear Search — O(n)
Check each element one by one. Works on any list.
def linear_search(items, target):
 for i in range(len(items)):
 if items[i] == target:
 return i # found
 return -1 # not found

Partial matching (with in)

def search_panels(panels, term):
 results = []
 for panel in panels:
 if term.lower() in \
 panel["brand"].lower():
 results.append(panel)
 return results

Binary Search — O(log n)
Much faster but requires sorted data.
def binary_search(items, target):
 left = 0
 right = len(items) - 1

 while left <= right:
 mid = (left + right) // 2
 if items[mid] == target:
 return mid
 elif items[mid] < target:
 left = mid + 1
 else:
 right = mid - 1

 return -1

Selection Sort — O(n²)
Find minimum, swap to front, repeat.
def selection_sort(items):
 n = len(items)
 for i in range(n - 1):
 min_idx = i
 for j in range(i + 1, n):
 if items[j] < items[min_idx]:
 min_idx = j
 items[i], items[min_idx] = \
 items[min_idx], items[i]
 return items

Quick Sort — O(n log n) average
Partition around a pivot, sort each half.
def quick_sort(items):
 if len(items) <= 1:
 return items
 pivot = items[len(items) // 2]
 left = [x for x in items if x < pivot]
 mid = [x for x in items if x == pivot]
 right= [x for x in items if x > pivot]
 return quick_sort(left)+mid+quick_sort(right)

Algorithm Comparison
Algorithm Time Requires
Linear search O(n) Any list
Binary search O(log n) Sorted list
Selection sort O(n²) —
Quick sort O(n log n) —

	Defining & Calling Functions
	Parameters & Arguments
	Scope (Local vs Global)
	Importing Modules
	Linear Search — O(n)
	Partial matching (with in)

	Binary Search — O(log n)
	Selection Sort — O(n²)
	Quick Sort — O(n log n) average
	Algorithm Comparison

