PM5 Quick Reference Functions

Defining & Calling Functions

def calculate cost(panels, price):
total = panels * price
return total

result = calculate cost(12, 450)
print(f"Cost: ${result}")
return sends a value back. Without it, the function returns None.

Parameters & Arguments
def greet(name, greeting="Hello"):
print(f"{greeting}, {name}!'")

greet("Alice") # Hello, Alice!
greet("Bob", "Good day") # Good day, Bob!

Scope (Local vs Global)
Variables inside a function are local — they only exist inside it.
x = 10 # global

def my func():
x = 99 # local (different x!)
print(x) # 99

my func()
print(x) # 10 (unchanged)

Importing Modules
import math
print(math.sqrt(16)) # 4.0

from math import pi
print(pi) # 3.14159...

import random as rnd
print(rnd.randint(1, 10))

Linear Search — O(n
Check each element one by one. Works on any list.
def linear search(items, target):

for i in range(len(items)):

if items[i] == target:
return i # found
return -1 # not found

Partial matching (with in)

def search panels(panels, term):
results = []
for panel in panels:
if term.lower() in \
panel["brand"].lower():
results.append(panel)
return results

Binary Search — O(log n)

Applied Computing Australia

Much faster but requires sorted data.
def binary search(items, target):

left = 0
right = len(items) - 1

while left <= right:
mid = (left + right)

// 2

if items[mid] == target:

return mid

elif items[mid] < target:

left = mid + 1
else:
right = mid - 1

return -1

Selection Sort — O(n?

ind minimum, swap to front, repeat.

def selection sort(items):
n = len(items)
for i in range(n - 1):
min_idx = i

for j in range(i + 1, n):
if items[j] < items[min idx]:

min_idx = j

items[i], items[min_idx] = \
items[min idx], items[i]

return items

Quick Sort — O(n log n) average
Partition around a pivot, sort’ each half.

def quick sort(items):
if len(items) <= 1:
return items
pivot = items[len(items)
left = [x for x in items
mid = [x for x in items
right= [x for x in items

// 2]
if x < pivot]
if x == pivot]

if x > pivot]

return quick sort(left)+mid+quick sort(right)

Algorithm Comparison

Algorithm Time Requires
Linear search O(n) Any list
Binary search O(log n) |Sorted list
Selection sort O(n?) —

Quick sort O(n log n) |—




	Defining & Calling Functions
	Parameters & Arguments
	Scope (Local vs Global)
	Importing Modules
	Linear Search — O(n)
	Partial matching (with in)

	Binary Search — O(log n)
	Selection Sort — O(n²)
	Quick Sort — O(n log n) average
	Algorithm Comparison

